PRACTICE MIDTERM 1 (CHRIST) - BRIEF SOLUTIONS

PEYAM RYAN TABRIZIAN

(1a) $\overline{\frac{1}{6}}$ (use the conjugate form, or the fact that $x-9=(\sqrt{x})^{2}-3^{2}$ since $x>0$)
(1b) $f^{\prime}(9)=\frac{1}{6}$, you've calculated that on question (1a)
(2a) Horizontal asymptote: $y=\frac{1}{3}$ (at $\pm \infty$)
Vertical Asymptotes: $x=1$ and $x=3$ (Note that there is no vertical asymptote at $x=8$ since the limit at 8 exists)
(2b) 0 (by the squeeze theorem)
(3) By the Intermediate Value Theorem (let $f(x)=x^{6}-1-\sin (x)$, and choose for example $a=0$ and $b=\pi$ and say that f is continuous)
(4a) $\log _{r}(2)$ is the unique number a such that $r^{a}=2$
(4b) Yes (by the horizontal line test); Domain $=$ Range of $f=(-\infty, 0)$; Range $=$ Domain of $f=\left(-\frac{\pi}{2}, 0\right)$
(4c) It's not the graph of a function (by the vertical line test)
(4d) $\ln (5)+1+\frac{1}{2} \ln (x)$
(4e) No! Let $f(x)=|x|$
(5a) $\delta=\min \left\{1, \frac{\epsilon}{13}\right\}=\min \left\{1, \frac{\frac{1}{1000}}{13}\right\}=\min \left\{1, \frac{1}{13000}\right\}=\frac{1}{13000}$ (it's just like the complicated case of $\epsilon-\delta$, except that $\epsilon=\frac{1}{1000}$
(5b) This is HARD, you can e-mail me about that, or ask me about that during office hours if you want, there will be nothing like that on the exam! In case you're curious, $\delta=\min \left\{\frac{1}{6}, \frac{\epsilon}{45}\right\}$

